- hypergeometrische Polynome
- гипергеометрические полиномы
Немецко-русский математический словарь. 2013.
Немецко-русский математический словарь. 2013.
Hypergeometrische Funktion — Die hypergeometrische Funktion stellt die Verallgemeinerung der geometrischen Reihe dar. Sie wird gemeinhin definiert als wobei Γ(x) die Gammafunktion (verallgemeinerte Fakultätsfunktion) ist. Die hypergeometrische Funktion enthält viele wichtige … Deutsch Wikipedia
Jacobi-Polynome — Die Jacobi Polynome, auch hypergeometrische Polynome sind eine Menge orthogonaler Polynome im Intervall 1..1 mit der Gewichtungsfunktion (1 − z)α(1 + z)β, mit α, β > 1. Sie sind benannt nach dem Mathematiker Carl Gustav Jacob Jacobi und bilden … Deutsch Wikipedia
Gegenbauer-Polynome — Die Gegenbauer Polynome, auch ultrasphärische Polynome sind eine Menge orthogonaler Polynome im Intervall 1..1 mit der Gewichtungsfunktion (1 x2)α 1/2, mit α > 1/2. Sie sind benannt nach dem Mathematiker Leopold Gegenbauer und bilden die… … Deutsch Wikipedia
Jacobi-Polynom — Die Jacobi Polynome (nach Carl Gustav Jacob Jacobi), auch hypergeometrische Polynome sind eine Menge polynomieller Lösungen des Sturm Liouville Problems, die einen Satz orthogonaler Polynome bilden, und zwar auf dem Intervall [ 1,1] bezüglich der … Deutsch Wikipedia
Höhere transzendente Funktionen — Das Gebiet der speziellen Funktionen beschäftigt sich mit gewissen Funktionen, die sowohl in der Mathematik selbst als auch in den angewandten Wissenschaften (z. B. mathematische Physik) häufig auftreten. Die meisten Funktionen von Interesse sind … Deutsch Wikipedia
Spezielle Funktionen — Das Gebiet der speziellen Funktionen beschäftigt sich mit gewissen Funktionen, die sowohl in der Mathematik selbst als auch in den angewandten Wissenschaften (z. B. mathematische Physik) häufig auftreten. Die meisten Funktionen von Interesse sind … Deutsch Wikipedia
Spezielle Funktion — In der Analysis, einem Teilgebiet der Mathematik, bezeichnet man gewisse Funktionen als spezielle Funktionen, weil sie sowohl in der Mathematik selbst als auch in ihren Anwendungen (z. B. in der mathematischen Physik) eine tragende Rolle… … Deutsch Wikipedia
Maritschew — Oleg Igorewitsch Maritschew (russisch Олег Игоревич Маричев; * 7. September 1945 in Welikije Luki, Russland) ist ein russischer Mathematiker. Inhaltsverzeichnis 1 Ausbildung 2 Forschung über Integrale 3 Werke … Deutsch Wikipedia
Oleg Igorevich Marichev — Oleg Igorewitsch Maritschew (russisch Олег Игоревич Маричев; * 7. September 1945 in Welikije Luki, Russland) ist ein russischer Mathematiker. Inhaltsverzeichnis 1 Ausbildung 2 Forschung über Integrale 3 Werke … Deutsch Wikipedia
Gegenbauer-Polynom — Die Gegenbauer Polynome, auch ultrasphärische Polynome , sind eine Menge orthogonaler Polynome im Intervall −1..1 mit der Gewichtungsfunktion (1−x2)α−1/2, mit α > −1/2. Sie sind benannt nach dem Mathematiker Leopold Gegenbauer und bilden die… … Deutsch Wikipedia
Hurwitzsche Zeta-Funktion — Die Hurwitzsche Zeta Funktion (nach Adolf Hurwitz) ist eine der vielen bekannten Zeta Funktionen, die in der analytischen Zahlentheorie, einem Teilgebiet der Mathematik, eine wichtige Rolle spielt. Die formale Definition für komplexe s,q lautet… … Deutsch Wikipedia